Algebraic Geometry WS20 Exercise set 2.

Instructor: Anton Mellit

Some notations: k is a field, $A^n = \operatorname{Spec} k[x_1, \ldots, x_n].$

Problem 1. Find all prime ideals of the ring of formal power series k[[x]]. The ring of power series is defined similarly to the ring of polynomials, but considering infinite sequences $(a_0, a_1, a_2, ...)$ which are written as $a_0 + a_1x + a_2x^2 + \cdots$.

Problem 2. Let k be a field, and let U, V be two non-empty open subsets of A^n .

- (1) Show that the intersection $U \cap V$ is not empty.
- (2) Show that $U \cap V$ contains a geometric point.

Problem 3 (Hartshorne, p. 7, Ex. 1.4). Let k be an algebraically closed field. Consider the set k^2 with the following two topologies. The first one comes from identifying k^2 with Specm k[x, y], on which we have the Zariski topology. The second one is the product topology of Specm $k[x] \times \text{Specm } k[y]$. Show that the two topologies are different.

Problem 4. Let k be an algebraically closed field.

- (1) Describe all prime ideals of the ring k[x, y]/(xy).
- (2) Describe all prime ideals of the ring $k[x, y, z]/(x^2-yz, xz-x)$ (see Hartshorne, p. 7, Ex. 1.3).

Due date: 23.10.2020, 9:45