Algebraic Geometry WS20 Exercise set 9.

Instructor: Anton Mellit

Problem 1 (Hartshorne, p. 79, Ex. 2.3 (Reduced schemes), from the last time). A scheme X is called *reduced* if for every open set $U \subset X$ the ring $O_X(U)$ has no non-zero nilpotent elements.

- (1) Show that X is reduced if and only if for every point $x \in X$ the local ring $O_{X,x}$ has no non-zero nilpotent elements.
- (2) Let X be a quasi-compact scheme. Let X_{red} be a ringed space constructed as follows. As a topological space X_{red} is simply X. For any open set $U \subset X$ let $O_{X_{\text{red}}}(U)$ be the quotient of $O_X(U)$ by the nil-radical. Show that X_{red} is a scheme and construct a morphism $\iota : X_{\text{red}} \to X$ which is the identity on the underlying topological space. The scheme X_{red} is called *the reduced scheme associated to* X.
- (3) For any reduced scheme Y, show that any morphism $Y \to X$ can be uniquely decomposed as the composition $Y \to X_{\text{red}} \xrightarrow{\iota} X$.

Problem 2. Let *R* be a graded ring, and let $\mathfrak{p} \subset R$ be a prime ideal, not necessarily graded. Let \mathfrak{q} be the ideal generated by the homogeneous elements of \mathfrak{p} . Show that \mathfrak{q} is also prime.

Problem 3. Let R = k[x, y] be the graded ring in which R_n is the span of monomials $x^i y^j$ with 2i + 3j = n, i.e. the degree of x is 2 and the degree of y is 3. Describe Proj(R) as a set in the case

- (1) if k is algebraically closed;
- (2) if k is arbitrary.

Due date: 11.12.2020, 9:45